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Abstract

A unified algorithm for solving Langevin equations with deeply asymptotic parameters is proposed and tested. The

method consists of identifying solvable linear friction and implementing the force evaluations by use of the Runge–

Kutta method. We apply the present scheme to the periodic motion of an overdamped particle subjected to a multi-

plicative white noise. The accurate calculations for the temporal velocity of the particle and its correlation function can

be realized by introducing an inertial term. It is shown that the fluctuation around the steady quantity increases with

decreasing time step in the overdamped white-noise algorithm, however, a massive white-noise technique greatly re-

duces this spurious drift, and the result can converge to the correct value if the added inertia approaches zero. The other

application is the simulation of generalized Langevin equation with an exponential memory friction, this allows us to

treat a weak non-Markovian process.
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1. Introduction

Numerical methods to solve stochastic differential equations (SDEs) have been discussed extensively in

the literature [1–3]. Very recently, Hershkovitz [4] has derived a fourth-order algorithm by means of the

Taylor expansion, which allows for very low friction. Drozdov and Brey [5], Forbert and Chin [6] have

also used the operator factorization method [7] to yield a fourth-order Langevin algorithm. Superiority of
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these higher-order algorithms is the stability of the calculated results and large time steps being followed.

The different time scale in SDEs is referred to as a stiff problem, here, the stiffness may come from two

aspects: the white noise limit of the colored noise and the overdamped limit (weak inertia) of the system.
Indeed, in many situations, stochastic processes with deeply asymptotic parameters are physically relevant.

Unfortunately, from an algorithm viewpoint, those limits cannot be taken, namely, different algorithms

have to apply to different parameter regions. A family of implicit schemes which are well suited to stiff

stochastic systems and avoid some of the pitfalls inherent in fully implicit schemes that have been sug-

gested by some authors [8,9]. The necessity of choosing the step small not only implies that the amount of

computations increases, but also, more importantly, that the computational error increases. Moreover, the

implicit algorithm cannot be applied to the opposite limits such as a strong damping or a long correlation

time.
In particular, additive noise disappears from the noise-averaged form of the dynamical equation, but

in the case of multiplicative noise with an intensity function gðxÞ, which should lead to dramatic

changes of system behavior. Two classical illustrations are the Kubo oscillator [10] and the state-de-

pendent diffusion [11–14]. For spatial periodic systems there the velocity of particle and its correlation

function are two important output signs [15,16]. It stems from the fact that during a change of the

noise nðtÞ also the random variable xðtÞ changes and therefore hgðxðtÞÞnðtÞi is no longer zero, and this

average leads to the ‘‘spurious’’ drift. So that the velocity of particle at any time has to evaluate from

the differential quotient of the coordinate. The problem is made more severe by the fact that the
temporal velocity _xðtÞ / ðDtÞ�1=2

becomes relatively large as Dt ! 0. This implies that calculated results

should not convergent and thus the direct integration algorithm is not valid. In this paper, we will

present an expanding for the original problem, which includes deeply asymptotic parameters such as

inertia of the particle and correlation time of the noise.

The structure of this paper is as follows. In Section 2, the algorithm is described, the fundamental

mismatch between the exponential nature of the iteration collocation and the Gaussian character of the

integration of noise is shown in the resulting algorithm. In Section 3, the damping-integration approach

is expanded to solve a generalized Langevin equation (GLE). Two examples in Section 4 are, respec-
tively, the overdamped state-dependent transport and the energy relaxation of a system with a weak

memory friction. Further, we demonstrate the necessity and superiority of the proposed algorithm.

Finally, Section 5 offers a summary.
2. Damped-integration algorithm

An operating model of multiplicative white noise induced transport is simply written as

_xðtÞ ¼ f ðxÞ þ gðxÞnðtÞ; ð1Þ

with hnðtÞi ¼ 0 and hnðtÞnðt0Þi ¼ 2dðt � t0Þ. In order to remove the difficulty mentioned in Section 1, we

introduce an inertial term into Eq. (1) and use a weak Ornstein–Uhlenbeck noise eðtÞ (with a small cor-

relation time) [18–20] to mimic the white noise nðtÞ, i.e.

_xðtÞ ¼ vðtÞ; ð2Þ
m _vðtÞ þ cvðtÞ ¼ f ðxÞ þ gðxÞeðtÞ; ð3Þ
_eðtÞ ¼ � 1

sc
eþ 1

sc
gðtÞ; ð4Þ
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where m is the mass of the particle, c denotes the viscous damping coefficient, f ðxÞ ¼ �U 0ðxÞ (UðxÞ is the
potential), gðxÞ is the noise strength, sc is the correlation time of the colored noise, and gðtÞ satisfies

hgðtÞi ¼ 0 and hgðtÞgðt0Þi ¼ 2dðt � t0Þ. This describes practically a general motion of a particle with inertia
subjected to a multiplicative colored noise.

If the r.h.s. of Eq. (3) is regarded as a source term, we can perform the integration of the velocity variable

during a step interval ½t; t þ Dt�, then the present algorithm is processed as follows:
vðt þ DtÞ ¼ exp
�
� c
m
Dt
�
vðtÞ þ 1

m

Z tþDt

t
exp

h
� c
m
ðt þ Dt � sÞ

i
� f ðxðsÞÞf þ gðxðsÞÞeðsÞgds; ð5Þ
xðt þ DtÞ ¼ xðtÞ þ m
c

1
h

� exp
�
� c
m
Dt
�i

vðtÞ þ 1

c

Z tþDt

t
1

n
� exp

h
� c
m
ðt þ Dt � sÞ

io

� ½f ðxðsÞÞ þ gðxðsÞÞeðsÞ�ds; ð6Þ
eðt þ DtÞ ¼ expð�Dt=scÞeðtÞ þ
1

sc

Z tþDt

t
exp½�ðt þ Dt � sÞ=sc�gðsÞds: ð7Þ

There are many ways to evaluate numerically the integrations in the r.h.s. of Eqs. (5) and (6), such

as the one-step collocation via the Taylor expansion [3,18,19] and the fourth-order stochastic Runge–

Kutta (S-R-K) algorithm [17]. Here, the deterministic integrations of Eqs. (5) and (6) are evaluated

directly by means of the second method, and for the multiplicative factor of the colored noise, we use

the S-R-K averaging �gðxðtÞÞ to instead of gðxðtÞÞ and depart it from the stochastic integration, because

the noise is always a rapidly varying quantity. Thus the present damping-integration algorithm is
obtained as
xðt þ DtÞ ¼ xðtÞ þ m
c

1
h

� exp
�
� c
m
Dt
�i

vðtÞ þ Fx þ
1

c
�gðxðtÞÞ sc½1

�
� expð � Dt=scÞ�

� msc
csc � m

expð
h

� Dt=scÞ � exp
�
� c
m
Dt
�i�

eðtÞ þ 1

csc
�gðxðtÞÞx2; ð8Þ
vðt þ DtÞ ¼ exp
�
� c
m
Dt
�
vðtÞ þ Fv þ

1

m
�gðxðtÞÞ msc

csc � m
expð

h�
� Dt=scÞ � exp

�
� c
m
Dt
�i�

eðtÞ

þ 1

msc
�gðxðtÞÞx1; ð9Þ
eðt þ DtÞ ¼ exp

�
� Dt

sc

�
eðtÞ þ 1

sc
x0; ð10Þ

with

fFx; Fvg ¼
Z tþDt

t
1
hn

� e�
c
mðtþDt�sÞ

i
; e�

c
mðtþDt�sÞ

o
f ðxðsÞÞds: ð11Þ

In Eqs. (8)–(10), xi ði ¼ 0; 1; 2Þ are given by
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x0 ¼
Z tþDt

t
exp

�
� 1

sc
ðt þ Dt � sÞ

�
gðsÞds;

x1 ¼
Z tþDt

t
exp

h
� c
m
ðt þ Dt � t0Þ

i
dt0

Z t0

t
exp

�
� 1

sc
ðt0 � sÞ

�
gðsÞds;

x2 ¼
Z tþDt

t
1

n
� exp

h
� c
m
ðt þ Dt � t0Þ

io
dt0

Z t0

t
exp

�
� 1

sc
ðt0 � sÞ

�
gðsÞds:

ð12Þ

They are independent Gaussian random variables with zero mean, and the standard deviations and cross

correlations are given in Appendix A. It is noticed that x0 and x1 used in the next three steps are the same

as the first one, however, following the same pattern of Honeycutt [17], it requires two sets of random

numbers instead of one for x2. So the present algorithm requires four evaluations of both the force and the

noise intensity, as well as four independent Gaussian random numbers per updating step, which is com-

putationally very easily and avoids evaluating derivative of f ðxÞ and gðxÞ.
3. Solving generalized Langevin equation

To further illustrate the versatility of our damping-integration algorithm, we apply this approach to a

GLE with an exponential memory friction. The GLE reads

m€xðtÞ þ
Z t

0

ceðt � t0Þ _xðt0Þdt0 ¼ f ðxÞ þ nðtÞ; ð13Þ

with

hnðtÞnðt0Þi ¼ T ceðjt � t0jÞ ¼ T
a
sD

exp

�
� jt � t0j

sD

�
; ð14Þ

where T is the temperature, a is the zero-frequency damping coefficient, and sD the memory time.

Eq. (13) can be rewritten as a three-dimensional Markovian LE, i.e.

_xðtÞ ¼ v;

_vðtÞ ¼ 1

m
zþ 1

m
f ðxÞ;

_zðtÞ ¼ � 1

sD
z� a

sD
vþ

ffiffiffiffiffiffiffiffi
2aT

p

sD
gðtÞ:

ð15Þ

Consequently, the damping-integration algorithm for solving the above three-dimensional LE is suggested

as

xðt þ DtÞ ¼ xðtÞ þ 1

r1 � r2

r1
r2
½expðr2DtÞ

�
� 1� � r2

r1
½expðr1DtÞ � 1�

�
vðtÞ þ Fx þ

ffiffiffiffiffiffiffiffi
2aT

p

msDðr1 � r2Þ
Y3; ð16Þ
vðt þ DtÞ ¼ ½r1 expðr2DtÞ � r2 expðr1DtÞ�
r1 � r2

vðtÞ þ ½expðr1DtÞ � expðr2DtÞ�
mðr1 � r2Þ

zðtÞ þ Fv þ
ffiffiffiffiffiffiffiffi
2aT

p

msDðr1 � r2Þ
Y2;

ð17Þ
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zðt þ DtÞ ¼ mr1r2
r1 � r2

expðr2DtÞ½ � expðr1DtÞ�vðtÞ þ
1

r1 � r2
r1 expðr1DtÞ½ � r2 expðr2DtÞ�zðtÞ

þ Fz þ
ffiffiffiffiffiffiffiffi
2aT

p

sDðr1 � r2Þ
Y1; ð18Þ

where r1 and r2 are the roots of the equation: msDr2 þ mr þ a ¼ 0, and

Fx ¼
1

mðr1 � r2Þ

Z tþDt

t

r2
r1
f1

�
� exp½r1ðt þ Dt � sÞ�g � r1

r2
f1� exp½r2ðt þ Dt � sÞ�g

�
f ðxðsÞÞds;

Fv ¼
1

mðr1 � r2Þ

Z tþDt

t
r1 exp½r2ðtf þ Dt � sÞ� � r2 exp½r1ðt þ Dt � sÞ�g � f ðxðsÞÞds;

Fz ¼
r1r2

r1 � r2

Z tþDt

t
exp½r2ðtf þ Dt � sÞ� � exp½r1ðt þ Dt � sÞ�g � f ðxðsÞÞds:

ð19Þ

The above three quantities are numerically calculated by using the fourth-order S-R-K algorithm [17]. As

well as Yi ði ¼ 1; 2; 3Þ in Eqs. (16)–(18) are given by

Y1 ¼
Z tþDt

t
fr1 exp½r1ðt þ Dt � sÞ� � r2 exp½r2ðt þ Dt � sÞ�ggðsÞds;

Y2 ¼
Z tþDt

t
fexp½r1ðt þ Dt � sÞ� � exp½r2ðt þ Dt � sÞ�ggðsÞds;

Y3 ¼
Z tþDt

t

1

r2
f1

�
� exp½r2ðt þ Dt � sÞ�g � 1

r1
f1� exp½r1ðt þ Dt � sÞ�g

�
gðsÞds:

ð20Þ

Here, Y1, Y2, and Y3 are also three independent Gaussian random variables with zero-mean, their standard

deviations and cross correlations are given in Appendix B.

It should like to remark that the real parts of both r1 and r2 are negative, so that the iterations of Eqs.
(16)–(18) are always stability. In the limit of Dt ! 0 (Dt=sD ! 0), we have limDt!0 Y1 ¼ OðDt1=2Þ,
limDt!0 Y2 ¼ OðDt3=2Þ, and limDt!0 Y3 ¼ OðDt5=2Þ, thus the present algorithm can reduce to a multi-variable

S-R-K algorithm developed by Honeycutt in [17]. Moreover, our algorithm is also valid in the limit of

sD ! 0 (i.e., r1 ¼ �a=m and r2 ! �1).
4. Numerical examples

4.1. Example 1: directed flux in a periodic potential

As an example for the effort of the proposed algorithm, we consider state-dependent diffusion of an

overdamped particle, where the potential and the diffusion coefficient [11] are taken to be

UðxÞ ¼ U0½1� cosðxÞ�; D�1ðxÞ ¼ D�1
0 ½1� k cosðx� /Þ�; ð21Þ

where k (06 k < 1) is the amplitude of the modulation, the phase / plays a role of determining the direction

of flow. It is appreciated a long time ago that the Boltzmann distribution which governs system subjected to

the state-dependent diffusion, thus one must have [11]

f ðxÞ ¼ �U 0ðxÞ þ 1

2

dDðxÞ
dx

; gðxÞ ¼
ffiffiffiffiffiffiffiffiffiffi
DðxÞ

p
: ð22Þ



246 J.-D. Bao et al. / Journal of Computational Physics 197 (2004) 241–252
The simulation of the transport process of a particle is done starting from xð0Þ ¼ 0, vð0Þ ¼ 0, and sampling

eð0Þ from a Gaussian distribution [18–20] with averaging over N ¼ 5� 104 stochastic realizations. The

parameters used are U0 ¼ 1:0, c ¼ 1:0, and / ¼ p=2.
In Fig. 1, we evaluate time evolution of the mean velocity of the particle hvðtÞi by using two kinds of time

steps Dt ¼ 0:002 and 0:0002. Three kinds of algorithms are applied: the overdamped white-noise algorithm

[Eq. (1)]; the proposed massive white-noise algorithm [Eqs. (2) and (3) with sc ¼ 0]; and the colored-noise

algorithm of Fox [Eqs. (2)–(4) with m ¼ 0]. The results obtained by the first method show that the error

increases with decreasing time step due to the effect of the spurious drift. Thus, it is demonstrated that the

overdamped multiplicative white-noise algorithm is fail in the calculation of the temporal velocity of the

particle, namely, it does not allow to provide very small time steps.

The average steady velocity as a function of the control parameters m or sc is shown in Fig. 2. In order to
eliminate fluctuation drift of the calculated results [20], the time-averaged velocity is numerically evaluated

by

hvi ¼ 1

tb � ta

Z tb

ta

h _xðsÞids ¼ 1

N

XN
n¼1

xnðtbÞ � xnðtaÞ
tb � ta

; ð23Þ

where tb > ta, ta � m=c and sc, Dt ¼ 5� 10�4, ta ¼ 3:0, and tb ¼ 8:0. The realistic value of the steady ve-

locity is �v ¼ 0:3365 in the limits of both m ! 0 and sc ! 0. It is observed that our massive white-noise

algorithm is more stable than that of the colored-noise scheme [10], and the former can approach the re-

alistic value of the steady velocity. On the basis of Eq. (23), one concludes that the expectation value �v
computed via various algorithms can converge flatly, thus without fundamentally curing the convergence

failure of the algorithm.
Fig. 1. Comparison of temporal velocity using three kinds of algorithms. The parameter values are D0 ¼ 2:0, k ¼ 0:7, c ¼ 1:0,

m ¼ 0:01, and sc ¼ 0:01. The step size for the first case is Dt ¼ 0:002 and for the second case Dt ¼ 0:0002.



Fig. 2. The average steady velocity as a function of the introduced parameters m and sc. The time step used is Dt ¼ 0:0005 and the

other parameters are the same as Fig. 1.

J.-D. Bao et al. / Journal of Computational Physics 197 (2004) 241–252 247
The comparison of temporal velocity is performed here by using three kinds of algorithms. The pa-

rameters used are D0 ¼ 2:0, k ¼ 0:7, c ¼ 1:0, m ¼ 0:01, and sc ¼ 0:01. The step size for the first case is

Dt ¼ 0:002 and for the second case Dt ¼ 0:0002. A further demonstration of the inefficiency of the over-

damped multiplicative white-noise algorithm is observed in calculating the correlation function of velocity
as

CðtdÞ ¼ hdvðt � tdÞdvðtÞi; dvðtÞ ¼ vðtÞ � hvðtÞi: ð24Þ

In Fig. 3, the correlation function of velocity is plotted as a function of time. Here, two step sizes are

Dt ¼ 0:002 and 0:0002, respectively. It is seen that, the fluctuation in the correlation function of velocity is
Fig. 3. Comparison of velocity correlation function using three kinds of algorithms. The parameter values are D0 ¼ 2:0, k ¼ 0:5,

c ¼ 1:0, m ¼ 0:02, and sc ¼ 0:02. The step size for the first case is Dt ¼ 0:002 and for the second case Dt ¼ 0:0002.
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stronger than that of the velocity itself, and increases with decreasing time step if one uses directly nu-

merical integration of Eq. (1). This is due to the fact that the term ðDtÞ�1=2
appears in the calculated

quantity. However, both the colored-noise scheme [10] and our massive white-noise algorithm can give the
accepted results.

Dependence of the diffusion rate constant D� of the particle on the control parameters m or sc is shown in

Fig. 4. Here, the diffusion rate constant is evaluated from D� ¼ 1
2
limt!1

1
t h½xðtÞ � hxðtÞi�2i [15], and its

realistic value can be determined by this expression from Eq. (1). The calculated result by using two indirect

algorithms approaches asymptotically to D� of Eq. (1). Indeed, it is observed that the present massive white-

noise algorithm gives the best accurate result and converges flatly in comparison with the weak colored-

noise scheme.

It is clear from Figs. 1 and 3 that the fluctuation in the velocity of particle and its correlation function is
excessively large if one uses the overdamped multiplicative white-noise algorithm with a small Dt. The
question is, when is such a small time step essential in any calculation? and one wants to know whether the

spurious drift is due simply to the small value of Dt used. In order to answer these questions, here, we plot

instead in Fig. 5, for a small value of m or sc, the average velocity �v [Eq. (23)] and its fluctuation width

determined by

rv ¼
1

tb � ta

Z tb

ta

½ _xðsÞ
D�

� �v�2
E
ds
�1=2

;

as a function of Dt. It is shown that the fluctuation width of velocity decreases with the increase of time step,

however, the mean velocity is diverged from the correct value as the time step used is increased. If one uses a

large step size, the calculated results will be instability because of the numerical error of evaluating the force

evaluation. Moreover, in order to evaluate the velocity correction function between a short time difference

sd, the time step needs to be chosen: Dt � td. It is remarkably that the time step should be also decreased for

the cases of large noise intensity and higher non-linearity of force filed.

4.2. Example 2: relaxation with a weak memory friction

Another example for the usefulness of the damping-integration algorithm is the calculation of the energy

relaxation for a week non-Markovian process. The potential is taken to be [5,6]

UðxÞ ¼ x4 � 2x2: ð25Þ
Fig. 4. The diffusion rate constant as a function of the introduced parameters m or sc. The diffusive time corresponds to t ¼ 80:0, the

step size to Dt ¼ 5� 10�4, as well as the other parameters are the same as Fig. 3.



Fig. 5. The average steady velocity and its fluctuation width as functions of time step. The parameters sued are D0 ¼ 2:0, k ¼ 0:7,

m ¼ sc ¼ 0:01, ta ¼ 2:0, and tb ¼ 6:0. The thin straight line is the realistic result.
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By use of parameters a ¼ 1, T ¼ 0:2, and for a small memory time sD, we simulate the relaxation of a

particle starting from xð0Þ ¼ 0 and vð0Þ ¼ 0 evolving to a finite time of t ¼ 6. The temporal energy is

hEðtÞi ¼ 1

2
hvðtÞ2i þ hUðxðtÞÞi: ð26Þ

For comparison, the result obtained by Forbert and Chin [6] is hEðt ¼ 6Þi ¼ �0:773 for the Markovian

white noise case (sD ! 0).
Fig. 6. The convergence of various algorithms for solving the stiff GLE. The energy calculated is at a finite time of t ¼ 6 with pa-

rameters T ¼ 0:2, a ¼ 1, and sD ¼ 0:005. The thin straight line is the realistic result.
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In Fig. 6, dependence of the damping-integration algorithm on time step is remarkably flat, and this

algorithm yields convergent result. A strong point of favor for our algorithm is that the integration time

step can keep a constant for any memory times, namely, the limit of sD ! 0 and Dt finite (Dt=sD ! 1) can
be safely taken. In other words, for sD ! 0 (which corresponds to the limit of white noise), the proposed

algorithm [Eqs. (16)–(18)] yields exactly the Markovian Lengevin algorithm at order ðDtÞ4 for the inte-

gration of force. Let us also notice the results calculated by the fourth-order deterministic R-K algorithm

(D-R-K) of Hershkovitz [4] and the S-R-K of Honeycutt [17]. The former occurs numerical overflow when

Dt > 0:003, and the step sizes larger than 0.03 will be avoided in the latter run. Clearly, our damping-in-

tegration algorithm is the most stable when the time step changes. It suggests that the better convergent of

the present algorithm for larger Dt is not only due to the finite value of the ratio Dt=sD, but also to the fact

that the value of Dt can be considered to probably large to even precise integrate the force function via the
fourth-order S-R-K method.
5. Summary

In this paper, the proposed algorithm makes the maximum use of analytical knowledge of the SDEs, and

the time step of integration can be chosen to meet the required precision for the deterministic parts. We

make two kinds of suggestions that an inertial term is added into usual overdamped multiplicative SDEs
and a weak Ornstein–Uhlenbeck with a small correlation time is used to mimic the white noise. Thus

intrinsic fluctuation in the velocity at small time steps can be reduced and ‘‘spurious’’ drift from expectation

value can be removed. It is shown that the massive white-noise scheme not only avoids the spurious drift,

but it also provides us with highly accurate time-averaged quantities. Any parameters of the model can be

considered and the stiff difficult has been avoided. Computing the mean energy of a particle in a bistable

potential with an exponential memory friction, we have shown that even for a much weak non-Markovian

process, a finite time step size can be safely taken. It is also seen that the present algorithm has got a very

flat convergent curve. One should therefore explore the effect of using the damping-integration algorithm
rather than the other methods in implementing stiff stochastic differential equations.
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Appendix A. Noise moments in massive colored-noise algorithm
hx2
0i ¼

sc
2

1

�
� exp

�
� 2

sc
Dt
��

; ðA:1Þ
hx0x1i ¼
s2c
2

1� exp � s�1
c þ c

m


 �
Dt

� 
1þ c

m sc

8<
: þ

exp � 2
sc
Dt

� �
� exp � s�1

c þ c
m


 �
Dt

� 
1� c

m sc

9=
;; ðA:2Þ
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hx2
1i ¼

s2c
1þ c

m sc

m
2c

1
h�

� exp
�
� 2

c
m
Dt
�i

þ
sc exp � 2 c

mDt

 �

1� c
m sc

exp

��
� Dt

sc
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m
Dt
�
� 1

��

� s3c
2
exp

�
� 2

c
m
Dt
� 1� exp � Dt

sc
þ c

mDt
h i
1� c

m sc

8<
:

9=
;

2

; ðA:3Þ
hx0x2i ¼ s2c 1

�
� exp

�
� Dt

sc

��
� schx2

0i � hx0x1i; ðA:4Þ
hx1x2i ¼ s2c
m
c

1
h�

� exp
�
� c
m
Dt
�i

þ scm
csc � m

exp
��
� c
m
Dt
�
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�
� Dt

sc

���

� schx0x1i � hx2
1i; ðA:5Þ
hx2
2i ¼ s2c Dt

�
� sc 1

�
� exp

�
� Dt

sc

��
� m

c
1
h

� exp
�
� c
m
Dt
�i

þ scm
csc � m

exp

��
� Dt

sc

�
� exp

�
� c
m
Dt
���

� schx0x2i � hx1x2i: ðA:6Þ

Now, x0, x1, and x2 can be produced by a linear combination of three uncorrelated Gaussian random

numbers with zero-mean and standard deviation one [18].

Appendix B. Noise moments in GLE algorithm
hY 2
1 i ¼

r1
2
½expð2r1DtÞ � 1� þ r2

2
½expð2r2DtÞ � 1� � 2r1r2

r1 þ r2
fexp½ðr1 þ r2ÞDt� � 1g; ðB:1Þ
hY 2
2 i ¼

1

2r1
½expð2r1DtÞ � 1� þ 1

2r2
½expð2r2DtÞ � 1� � 2

r1 þ r2
fexp½ðr1 þ r2ÞDt� � 1g; ðB:2Þ

hY 2
3 i ¼

r1 � r2
r1r2

� �2

Dt þ r1 � r2
r1 þ r2

1

r32
½1

�
� expðr2DtÞ� �

1

r31
½1� expðr1DtÞ�

�
þ 1

2r31
½1� expðr1DtÞ�2

þ 1

2r32
½1� expðr2DtÞ�2 �

2

r1r2ðr1 þ r2Þ
exp½ðr1f þ r2ÞDt� � expðr1DtÞ � expðr2DtÞ þ 1g; ðB:3Þ
hY1Y2i ¼
1

2
½expðr1DtÞ � expðr2DtÞ�2; ðB:4Þ

hY1Y3i ¼
1

2r1
½1� expðr1DtÞ�2 þ

1

2r2
½1� expðr2DtÞ�2 �

2

r1 þ r2
1f � expðr1DtÞ

� expðr2DtÞ þ exp½ðr1 þ r2ÞDt�g; ðB:5Þ
hY2Y3i ¼
1

2r21
½1� expðr1DtÞ�2 þ

1

2r22
½1� expðr2DtÞ�2 �

1

r1r2
1f � expðr1DtÞ

� expðr2DtÞ þ exp½ðr1 þ r2ÞDt�g: ðB:6Þ
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